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1 Calculating absolute or squared residuals

Let yijk denote the M-value for the ith sample, i = 1, . . . , nk, the jth CpG site, j = 1, . . . , 482 421 and
the kth group, k = 1, . . . ,K. Here nk is the sample size for the kth group and K is the total number
of groups. For a two group comparison, e.g. cancer vs normal, K = 2. Note that each CpG site is
analysed independently of the other CpGs.

The first step in the method is to calculate absolute or squared residuals for each observation in
each of the K groups for each CpG. For the jth CpG site, the mean M-value for the kth group is
calculated by

ȳjk =

∑nk

i=1 yijk
nk

.

Absolute deviations, or residuals, are calculated as

zijk = |yijk − ȳjk| ×
√

nk
nk − 1

,

where
√
nk/(nk − 1) is a leverage factor which takes into account unequal sample sizes. This ensures

that groups with larger samples sizes are not biased towards detecting larger variances compared to
groups with smaller sample sizes. If squared deviations are required,

zijk = (yijk − ȳjk)2 ×
√

nk
nk − 1

.

2 Calculating moderated t statistics

The zijk’s capture how much each sample deviates from the group mean. Hence groups that are more
variable will have larger zijk’s on average, and groups that are more consistent will have smaller zijk’s
on average. Let the true mean of the zijk for group k and CpG site j be denoted µzjk . Thus, for two
groups, testing the null hypothesis H0 : µzj1 = µzj2 effectively tests whether the two group variances
are equal, or H0 : σ2

j1 = σ2
j2. Here σ2

jk is the unknown true variance of the yijk’s for group k and CpG

site j. For the jth CpG site and the kth group, the mean absolute (or squared) deviation, z̄jk, is given
by

z̄jk =

∑nk

i=1 zijk
nk

.

In general, let zTj = (z1j , . . . , znj) be the vector of absolute or squared deviations for CpG site j, where
n = n1 + . . .+ nK is the total number of samples in the experiment. We can fit a linear model,

E(zj) = Xβj , (1)
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where X is a design matrix of full column rank and βj is a vector of coefficients. For the two group

case, with no additional covariates, βT
j = (βj0, βj1), where βj0 is the intercept and βj1 is the regression

coefficient. Here β̂j1 is estimated as the difference between the mean absolute or squared deviation
between group 1 and 2,

β̂j1 = z̄j1 − z̄j2.
More generally, in matrix terminology, a vector of regression coefficients can be estimated by

β̂j = (XTX)−1XT zj .

The variance of the absolute or squared deviations for the jth CpG site is denoted s2zj and are the
residuals obtained from fitting the linear model in Eqn. 1.

The classic Levene’s test (Levene, 1960) uses squared deviations and calculates ordinary t-statistics
in the case of a two group comparison, or an ANOVA in the case of K > 2. For a 2 group comparison,
the ordinary t test statistic for CpG site j is

tj =
β̂j1

szj
√
ν
.

where ν is the appropriate diagonal element from the positive definite matrix (XTX)−1. Two-sided
p-values can be computed from the t distribution with degrees of freedom equal to dj = n− p, where
p is the number of parameters estimated in the linear model.

It is well established in the genomics field that performing an ordinary t-test results in many false
positives, particularly for studies with smaller sample sizes (Efron et al., 2001; Tusher, Tibshirani and
Chu, 2001; Lönnstedt and Speed, 2002; Broberg, 2003; Wright and Simon, 2003). Hence, rather than
calculating ordinary t-tests, once the absolute or squared deviations have been obtained, moderated
t-statistics (Smyth, 2004), which employ empirical Bayes shrinkage of the s2zj , are calculated rather
than ordinary t-statistics. For full hierarchical model details and derivation of the moderated t-statistic
please refer to Smyth (2004). The moderated t-statistic is defined as

t̃j =
β̂j1

s̃zj
√
ν
,

where

s̃2zj =
d0s

2
z0 + djs

2
zj

d0 + dj

are the squeezed variances. The d0 and s2z0 are hyperparameters of the hierarchical model that can
be estimated using empirical Bayes estimation procedures, see Smyth (2004) for more details. For
differentially variable CpG sites, t̃j follows a scaled t distribution with degrees of freedom d0 + dj . For
CpG sites with no differences in variances, t̃j follows an unscaled t distribution with degrees of freedom
d0 + dj .

Once p-values are obtained from the moderated t statistics, they are adjusted for multiple testing
using the method of Benjamini and Hochberg (1995).

3 Thresholding on the log ratio of group variances

In addition to a p-value cut-off, a cut-off can be specified on the log ratio of the estimated group
variances, defined as

LogVarRatio = log

(
s2j1
s2j2

)
.

Specifying a LogVarRatio of at least | log(2)| means that the variance of one group is at least twice that
of the second group. In our cancer datasets, we specified a LogVarRatio cut-off of at least | log(5)|.
The LogVarRatio’s are symmetric about zero, with negative values meaning that the second group is
more variable than the first, and positive values mean that the first group is more variable than the
second.
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